6.1 Covariance Matrix

The log likelihood is

$$
\mathcal{L}=N \log \sigma-\frac{1}{2 \sigma^{2}} \sum_{i}\left(X_{i}-\mu\right)^{2}
$$

and so the elements of the Hessian matrix are

$$
\begin{gathered}
\frac{\partial^{2} \mu}{\partial \mu^{2}}=\frac{N}{\sigma^{2}} \\
\frac{\partial^{2} \sigma}{\partial \sigma^{2}}=\frac{3}{\sigma^{4}} \sum\left(X_{i}-\mu\right)^{2}+\frac{N}{\sigma^{2}}
\end{gathered}
$$

and

$$
\frac{\partial^{2} \mu}{\partial \mu \partial \sigma}=\frac{2}{\sigma^{2}} \sum\left(X_{i}-\mu\right) .
$$

Taking expectations over many realizations of the data X_{i} we get

$$
\frac{\partial^{2} \sigma}{\partial \sigma^{2}}=\frac{4 N}{\sigma^{2}}
$$

and

$$
\frac{\partial^{2} \mu}{\partial \mu \partial \sigma}=0 .
$$

The covariance matrix is thus

$$
C=\left[\begin{array}{cc}
\frac{\sigma^{2}}{N} & 0 \\
0 & \frac{\sigma^{2}}{4 N}
\end{array}\right] .
$$

The estimated (population) mean and variance are uncorrelated.

